| |||||||||||||||||
| Team Draft(The contents of this page are provided by the Finance and Economics Experimental Laboratory at the University of Exeter.) Stand-alone demonstration - Try out this multi-player experiment by making decisions against pre-existing results from a real session. Example subject instructions - View subject instructions.
AbstractStudents play together in pairs or threes and take turns choosing objects from a pool. Once each object has been chosen it is removed from the pool and cannot be chosen a second time by any player. The analogy is with a sports draft with the players as team selectors and the objects as footballers. The players have a valuation for each object with a strict preference ordering which is different for each player. These valuations are common knowledge. There are versions of the game for 2 players choosing 2 objects each (total 4 objects), 2 players choosing 3 objects each (total 6 objects) and 3 players choosing 2 objects each (total 6 objects). There is also a 'solo player' option where students play individually against the computer, which takes the role of the other player(s) and uses the sincere strategy of always choosing the object with the highest valuation. Intended Learning Outcomes
Discussion of Likely ResultsThe default setup is for 2 players choosing 2 objects each and appears in the paper by Brams and Straffin.
Consider first what happens if player 1 plays sincerely and chooses object A first. Note that player 2 cannot now do any better than to choose object B first, after which player 1 will pick C, leaving player 2 with B and D for a payoff of £6 and player 1 with A and C for a payoff of £6. (If instead player 2 were to choose either C or D first, player 1 would pick B, leaving player 2 with C and D for a smaller payoff of £5.) Now consider what happens if player 1 chooses object B first. Now player 2's most valuable object has gone and he cannot do any better than to end up with both C and D for a payoff of £5. So it does not profit player 2 to pick object A and he should therefore pick either C or D first. So now player 1 ends up with A and B for a payoff of £7 and player 2 ends up with C and D for a payoff of £5. Further PointsSuch a selection has been used as a method for conflict resolution between political parties. Was used as a part of the Good Friday agreements. Further ReadingBrams and Straffin. Prisoners' Dilemma and Professional Sports Drafts. Brams and Kaplan. 'Dividing the Indivisible: Procedures for Allocating Cabinet Ministries to Political Parties in a Parliamentary System,' Journal of Theoretical Politics, 2004 16 (2):143-173. Brams. 'Mathematics and Democracy' 2007, Princeton University Press. O'Leary, Brendan, Bernard Grofman and Jorgen Elklit (2001). 'The Use of Divisor Mechanisms to Allocate and Sequence Ministerial Portfolio Allocations: Theory and Evidence from Northern Ireland.' Mimeo, Department of Political Science, University of Pennsylvania. | ||||||||||||||||
|